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Abstract

Holographic reduced representation is based on a suitable distributive coding of structured information in conceptual vectors, which

elements satisfy normal distribution N(0,1/n). Existing applications of this approach concern various models of associative memory that

exploit a simple algebraic operation of scalar product of distributed representations to measure an overlap between two structured

concepts. This paper describes an inference process based on the rules modus ponens and modus tollens.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A modern view of the relation between brain and mind is
based on the neuroscience paradigm [9], according to
which the architecture of the brain is determined by
connections between neurons, their inhibitory or excitatory
character and also by the strength of the connections.
Human brain displays a great plasticity, synapses are
perpetually formed (but also deleted) during a learning
process. It can be stated, that an ability of brain to perform

not only cognitive activities, but also to serve as memory and

control center for our motoric activities, is fully encoded by

its architecture. The metaphor of the brain as a computer
should be therefore reformulated: the computer in the
metaphor should be specified as a parallel distributed

computer (containing many billions of neurons, elementary
processors interconnected into a complex neural network).
A program in such a parallel computer is directly encoded
in the architecture of the neural network, i.e. human brain
is a single-purpose parallel computer represented by a
e front matter r 2006 Elsevier B.V. All rights reserved.
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neural network, which cannot be reprogrammed without a
change of its architecture.
It follows that the mind and the brain create one integral

unit, which is characterized by a complementary dualism.
In this approach, the mind is a program carried out by the
brain. This program is specified by architecture of
the distributed neural network representing the brain.
The brain and the mind are two different aspects of the
same object:
(1)
 When talking about the brain, we refer to a ‘‘hardware’’
structure, biologically determined by neurons and their
synaptic connections (formally represented by a neural
network).
(2)
 When talking about the mind, we refer to cognitive and
other similar activities of the brain, which are carried
out on a symbolic level, where the transformation of
symbolic information is processed by (simple) rules.
Complementary dualism between brain and mind causes
certain difficulties in the interpretation of cognitive
activities of the mind. A purely neural approach to the
interpretation of cognitive activities of the mind focuses on
the search of neural correlates of cognitive activities
(connectionism). The application of the neural paradigm
to the interpretation of symbolic cognitive activities has a

www.elsevier.com/locate/neucom
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1A standard definition of an arithmetic operation k modulo n is

determined as a remainder after integer division by a number n. It is

necessary to comment, that the used definition of the operation k modulo n

is different from this standard definition for negative numbers k. While the

standard definition provides a result with a negative value, if the result is

negative in our definition, then it is transformed by adding n to it.
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‘‘side effect’’ in ‘‘dissolving’’ of these activities in their
microscopic description; symbols quasi ‘‘disappear’’ in the
detailed description of activities of neurons, strengths of
synaptic connections, etc. On the other side, the absolute
acceptance of symbolic paradigm in interpretation of
cognitive activities of mind (cognitivism) ignores the fact,
that mind is thoroughly embedded in brain. Purely
symbolic paradigm usually leads to a conceptual sterility.
An effort to explain cognitive activities of human mind
only in the phenomenological terms derived from the
concept of symbol is mostly fruitless. It leads to symbolic
constructs (methods, algorithms, etc.) without experimen-
tal support in neuroscience.

The goal of this paper is to highlight an alternative
approach, which may overcome the gap between the
connectionist and cognitivist approaches to the description
and interpretation of cognitive activities of the human
brain [25,27,28,29]. Distributed representation, where
mental representations (symbols) are specified by distrib-
uted patterns of neural activities, allows to integrate
connectionism and cognitivism. Formal algebraic opera-
tions can be introduced over these distributed patterns.
These operations allow mathematical modeling of cogni-
tive operations, as well as simulation of information
storage and retrieval processes in memory.

We shall turn our attention to a nontraditional style of
performing calculation by using distributed patterns. This
approach is substantially different from classical numeric
and symbolic computations and it is a suitable model tool
for understanding global properties of neural networks.
Such a ‘‘neurocomputing’’ is based on extensive randomly
created patterns (represented by multidimensional vectors
with random entries). This approach, which basic princi-
ples were formulated already at the end of the sixties
[3,10,11,24,26], was followed by Willshaw [30], Borselino
[1], and Murdock [12,13], and crowned by a series of works
by Tony Plate [17–19] on ‘‘holographic reduced representa-

tion’’ (HRR). Kanerva [6–8] in the middle of nineties
proposed a certain alternative to HRR, which is based on
randomly generated binary vectors. Rachkovskij and
Kussul suggested a new representation and processing of
structures with binary sparse distributed codes [22,23]. Jane
Neumann [14–16] showed that a simple gradient descent
approach can be used to learn the holistic transformation
of HRR from examples. The acquired knowledge can be
generalized to structures containing unseen elements and to
structures more complex than the training examples.

Our results as well as results of Plate [19] indicate, that
transformation vector need not be constructed by a
gradient optimization method, but it may be constructed
by one-step constructive approach.

The goal of the present paper is to apply HRR to model
simple higher level cognitive processes of reasoning by
application of rules modus ponens and modus tollens in
propositional and predicate logic. To keep the paper
readable, in its first part we shortly reformulated basic
results obtained by Plate [19].
2. A mathematical formulation of holographic

representation

In this section we shall outline basic properties of
holographic representation [1,6–8,11–19,30]. Its essential
term is a conceptual vector [4], which is represented by an
n-dimensional vector

a 2 Rn ) a ¼ a0; a1; :::; an�1ð Þ. (1)

Its components are random numbers from a normal
distribution

ai ¼ N 0; 1=n
� �

8i 2 0; 1; :::; n� 1f g, (2)

where N(0,1/n) is a random number from a normal
distribution with mean value of 0 and standard deviation
1/n.
A binary operation ‘‘convolution’’, defined over con-

ceptual vectors, assigns to a couple of vectors a third
vector, � : Rn � Rn ! Rn, or

c ¼ a� b. (3)

The components of the resulting vector c ¼ ðc0; c1; . . . ;
cn�1Þ are determined by a formula

ci ¼
Xn�1
j¼0

ajb i�j½ � i ¼ 0; 1; . . . ; n� 1ð Þ; (4)

where the index in the square brackets, [k] , is defined using
a modulo n operation as follows1

k½ � ¼ k mod n. (5)

For example, standard expression of convolution of two
vectors a and b for n ¼ 3 has the following form

c0 ¼ a0b0 þ a1b2 þ a2b1;

c1 ¼ a0b1 þ a1b0 þ a2b2;

c2 ¼ a0b2 þ a1b1 þ a2b0:

(6)

The convolution satisfies the following properties:
(1)
 commutativity, a� b ¼ b� a,

(2)
 associativity, ða� bÞ � c ¼ a� ðb� cÞ,

(3)
 distributiveness, a� ðabþ bcÞ ¼ aða� bÞ þ bða� cÞ,

(4)
 an existence of a unit vector, 1� a ¼ a ð1 ¼ ð1;

0; . . . ; 0ÞÞ.
Let us define a unary operation involution

ð Þ
n : Rn ! Rn (7)

by a formula

b ¼ an ¼ a 0½ �; a �1½ �; . . . ; a �nþ2½ �; a �nþ1½ �

� �
. (8)
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Fig. 2. A histogram of single components of cn � c, where c is randomly

generated conceptual vector for n ¼ 1000. We see from this plot that an

absolute value of the ‘‘first’’ component ðcn � cÞ0 is two orders of

magnitude greater than absolute values of remaining components

ðcn � cÞi, for iX1. It means that the product cn � c after a proper norma-

lization plays approximately a role of unit vector ðc � cÞ�1ðcn � cÞ¼
:
1 ¼

ð1; 0; . . . ; 0; 0Þ.
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The operation of involution satisfies the equations

aþ bð Þ
n
¼ an þ bn, (9a)

a� bð Þ
n
¼ an � bn, (9b)

a� bn
� �

� c ¼ a � b� cð Þ, (9c)

ann ¼ a. (9d)

A numerical implementation of the convolution can be
carried out by two different approaches. The first one is
based on formula (4); it offers a simple implementation,
but its running time is O(n3). The second one is much more
sophisticated and complex and it corresponds to an
application of fast Fourier transform (FFT) [21]; its
running time is O(n log n), see Fig. 1.

We prove that an involution c� is roughly proportional
to an inverse vector c�1, cn � c � 1. Let us study the ith
component of convolution cn � c

cn � c
� �

¼
Xn�1
k¼0

cnkc i�k½ � ¼
Xn�1
k¼0

c �k½ �c i�k½ �

¼

c � c for i ¼ 0ð Þ;

Pn�1
k¼0

c �k½ �c i�k½ � for i40ð Þ:

8><
>: ð10Þ

The zero-component of convolution ðcn � cÞ0 corresponds
to a scalar product c � c expressed as a sum of positive
‘‘diagonal’’ terms c2i , whereas other components ðcn � cÞi,
for iX1, are determined by sums of ‘‘nondiagonal’’ terms
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Fig. 1. Plots of computational time vs. problem dimensions for a

realization of convolution product by two different methods: (1) matrix

convolution is implemented by the formula (4), the time is proportional to

n3; (2) FFT convolution, the time is proportional to n� logðnÞ. We

observed that up to n ¼ 30 the matrix convolution is faster, but for

substantially greater values of n the convolution based on FFT is much

more effective.
cicj , which have random signs. This observation has an
important consequence that ðcn � cÞ0 is much greater than
absolute values of remaining components ðcn � cÞi, for
iX1, then we proved that cn � c � 1, which was to be
proved (see Fig. 2).
One of the basic aspects of the holographic representa-

tion is the possibility of reconstruction of the original
components, which were used for construction of convolu-
tion of two vectors. This possibility is very important, since
it allows to decode the original information from the
complex conceptual vectors. Reconstruction of x from c� x
is based on the formula proved above, cn � c � 1

~x ¼ cn � c� xð Þ ¼ cn � c
� �

� x¼
:

c � cð Þ1� x ¼ c � cð Þx

(11)

according to which the convolution cn with the vector c� x
produces the vector ~x, which is similar to the original
vector x, ~x � x. This result can be reformulated in the form

1

c � cð Þ
~x ¼

x0

x1 þ Z1

..

.

xn�1 þ Zn�1

0
BBBBB@

1
CCCCCA ¼ xþ Z, (12)

where the elements of g can be regarded as normally
distributed random noise with a zero mean and a standard
deviation much smaller than the standard deviation of the
elements of x.
The overlap of the resulting vector ~x with the original

vector x is determined by cosine of these two vectors with
real values

�1p cos x; ~xð Þ ¼
x � ~x

xj j ~xj j
p1, (13)
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Fig. 3. A histogram of overlaps determined by cosine of the angle between

vectors ~x and x (of dimensions n ¼ 1000) has the highest frequency around

0.7, from which follows, that the vectors ~x and x are similar.
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Fig. 4. Illustration of the superposition memory for the first seven vectors

of the set X, which contains 14 randomly generated conceptual vectors of

the dimension n ¼ 1000. The threshold value W can be in this case set

to 0.2.
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where the inequalities result directly from the Schwartz’s
inequality from linear algebra. The closer this value is to its
maximum value, the more similar2 the vectors ~x and x are.

The Fig. 3 shows a histogram of overlaps of vectors x
and ~x, where the most common overlap between ~x ¼
cn � c� x and x is around 0.7 (vectors c and x are
randomly generated different conceptual vectors of dimen-
sion n ¼ 1000). It follows that the vectors ~x and x are
similar, ~x � x.

Formula (12) may be also verified by the approach called
the ‘‘superposition memory’’. Suppose we have a set
containing pþ q randomly generated conceptual vectors,
X ¼ fx1;x2; :::; xp; xpþ1; :::; xpþqg, while poq. Using the first
p vectors from X allows us to define a memory vector t as
their sum

t ¼
Xp

i¼1

xi. (14)

The vector t represents a superposition memory, which
by a simple additive way contains vectors from the set X.
The decision, whether some vector x 2 X is contained in t
must be based on the value of the cosine (15)

cos x; tð Þ ¼
x � t

jxjjtj
. (15)

If this value is greater than a predefined threshold value,
cosðx; tÞXW, then the vector x is included in the super-
position memory t, in the opposite case, if cosðx; tÞoW, then
the vector x is not included in t (see Fig. 4).

The illustrative example (see Fig. 4) shows, that it is
possible to determine the presence of conceptual vectors in
superposition memory. Such vectors can ‘‘appear’’ in other
complex conceptual vectors, where these complex con-
ceptual vectors can be the result of complicated previous
calculations — transformations. The method used for
decoding of superposition memory vector is called ‘‘clean-
2If the overlap value approaches -1, then the vectors ~x and x are also

similar, even though they have opposite orientation (they are anticolinear).
up’’ (after Plate [19]) and it is specified as follows: let us
have a set of vectors X ¼ fx1;x2; . . . ;xng and some vector t.
We face the decision, whether the memory vector (trace) t
contains a superposition component, which is similar (or
which is not similar) to some vector from the set X. This
problem can be solved by calculating a cosine (15),
formally

x � t ¼
yes ðcosðx; tÞXWÞ;

no ðcosðx; tÞoWÞ;

(
(16)

where W is a chosen threshold value of acceptance of the size
of the cosine as the positive answer. The result of this
cleaning-up process is a subset of vectors

X tð Þ ¼ fx 2 X ; x � tg � X . (17)

We can also ask, whether the memory vector t is similar
to any of the vectors from the set X? This more general
question shall be decided from the maximum value of the
cosine

cosðt;X Þ ¼ max
x2X

cosðt; xÞ. (18)

Then we can rewrite (16) in the form

t � X ¼
yes ðcosðt;X ÞXWÞ;

no ðcosðt;X ÞoWÞ:

(
(19)

3. Associative memory

The construction of the associative memory belongs to
the main results of the holographic reduced representation,
which can be further generalized by the so called chunking.
Let us have a set of conceptual vectors X ¼ fx1;x2; . . . ;xng

and a training set Atrain ¼ fci=xi ; i ¼ 1; 2; . . . ;mg, which
contains mon associated couples of conceptual vectors
ci=xi, where ci is the input to the associative memory (cue)
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and xi is the output from the memory. Let’s create a
memory vector t representing the associative memory

created from the training set Atrain

t ¼ c1 � x1 þ � � � þ cm � xm ¼
Xm

i¼1

ci � xi (20)

Let us suppose, that we know in advance only the inputs
ci to the associative memory, we do not know the possible
outputs from the set X train ¼ fx1;x2; . . . ;xmg. The response
of the associative memory to the input—cue ci is
determined by the process of ‘‘cleaning-up’’ represented
by formulas (16)–(19). In the first step we shall calculate the
vector ~xi ¼ cni � t, then by a process based on the
maximum value of the cosine we shall find whether ~xi �

xi 2 X

cos ~xi;Xð Þ ¼ max
x2X

cos ~xi;xð Þ. (21)

The concept of associative memory will be illustrated by
the following two examples.

4. Sequence of symbols

The aim of this section is to show, that a holographic
distributed representation is able to process a linear
sequence of symbols, which are represented by a sequence
of conceptual vectors (see Plate [19]).

Let us study a sequence of 6 conceptual vectors of the
dimension n ¼ 1000

sequence ¼ a! b! c! d ! e! f
� �

. (22)

For these vectors we shall construct a memory vector

t0 ¼ aþ a� bþ a� b� cþ a� b� c� d

þ a� b� c� d � eþ a� b� c� d � e� f : ð23Þ

Let us suppose, that we get a memory vector, which is
constructed in such a way from a known bigger set of
vectors, but we do not know which vectors were selected
and in what order. We shall show, that by the clean up
procedure we can reconstruct the original sequence (22)
from the vector t0 step by step using the following
procedure:
1. step:a
 ¼ clean_up t0ð Þ, t1
 :¼ t0 � a,

~t1
 :¼ an � t1,� �
2. step:b
 ¼ clean_up ~t1 , t2
 :¼ t1 � a� b,
~t2
 :¼ ða� bÞn � t2,� �

3. step:c
 ¼ clean_up ~t2 , t3
 :¼ t2 � a� b� c,
~t3
 :¼ ða� b� cÞn � t3,� �

4. step:d
 ¼ clean_up ~t3 , t4
 :¼ t3 � a� b� c� d,
~t4
 :¼ ða� b� c� dÞn � t4,� �

5. step:e
 ¼ clean_up ~t4 , t5
 :¼ t4 � a� b� c� d � e,
~t5
 :¼ ða� b� c� d � eÞn � t5,� �

6. step:f
 ¼ clean_up ~t5 .
The function clean_up( � ) carries out the clean up process
for the given vector t with respect to the set of vectors
X ¼ fa; b; . . . ; f ; g; h; . . .g. The single steps of the recon-
struction of the sequence of conceptual vectors – symbols
are shown in Fig. 5, from which follows, that the process of
the reconstruction of a sequence of symbols rather quickly
degrades, already for the sixth vector the cosine is smaller
than 0.2. When all further possible vectors in the sequence
during the reconstruction have a subthreshold cosine value,
the clean-up procedure is finished, we assume, that the
sequence is complete. Modifications of the HRR encoding
and decoding processes can lessen the degradation for long
sequences [19].

5. Coding of relations

Holographic reduced representation can serve also as a
suitable means for encoding relations (predicates). Let us
study a binary relation P(x,y), when the Pascal code is
used, this relation is formally specified by the head

function P x : type1; y : type2ð Þ : type3 (24)

The single arguments of the relation are specified by the
types type1 and type2, which specify the domain of
conceptual space (i.e., a set of symbols representing
conceptual items), over which are these variables defined;
similarly also the relation P itself is understood as a
function, which set of values is specified by the type3. In
many cases the domain of all variables is postulated
beforehand; therefore their specifications can be omitted,
which substantially reduces the holographic representation
of relations. The reduced form of relation (24) looks as
follows

function P x ; yð Þ (25)

where we know in advance the type of variables x, y,
and also the type of the relation P itself. The holographic
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representation of relation (24) can have the following
form:
1 3 5 6 8

9 10 11 12 13 14 15 16

17 19 20 21 22 23 2418

33 35 36 37 38 39 4034

25 27 2826 29 30 31 32

41 43 44 45 46 47 4842

742

Fig. 6. A set of 48 similar figures, each of which contains two objects. The

objects are placed either next to each other, or on top of each other and

the objects are either small or big.

Table 1

Relations characterizing figures from Fig. 6

t ¼ P þ variable1 þ variable2 þ P � type3 þ variable1 � xþ type1
� �

þ variable2 � yþ type2
� �� �

, (26)
where the vectors variable1 and variable2 are used to
distinguish the arguments in (25). Decoding of the
representations is carried out step-by-step. In the first step
we use the clean up procedure to recognize the relation P
and also its variables x and y. In the second step we identify
the type type3 of the relation P, in the last, third step we use
previous results to identify variables x, y and also their
types type1 and type2. In many cases the representation of
the relation P(x,y) is satisfactory in the following simplified
form (see (25)):

t ¼ P þ variable1 � xþ variable2 � y: (27)

The chosen method of the holographic representation of
relation can be easily generalized also for more complex
(higher order) relations, where the variables are predicates
as well, e.g. Pðx;Qðy; zÞÞ, where the ‘‘inner’’ predicate Q is
characterized by

function Q y : type3; z : type4ð Þ : type5. (28)

In order to create a higher order relation Pðx;Qðy; zÞÞ, we
must presume a type compatibility of the second variable
of the relation P and of the type of relation Q, i.e.
type2 ¼ type5. In the simplified approach, where all the
types are the same, it is not necessary to distinguish the
types of single variables and the relations themselves. A
simplified holographic representation of relation (28) has
the following form:

t0 ¼ Q þ variable1 � yþ variable2 � z: (29)

By exchanging the representation (29) for the variable y
in the representation (27) we get the following resulting
representation of the higher order relation Pðx;Qðy; zÞÞ

t ¼ P þ variable1 � x

þ variable2 � Q þ variable1 � yþ variable2 � zð Þ

¼ P þ variable1 � xþ variable2 �Qþ

þ variable1 � variable2 � y

þ variable2 � variable2 � z. ð30Þ
Row Specification

1 ver(lg(x),lg(y))

2 hor(lg(x),lg(y))

3 ver(sm(x),lg(y)) and ver(lg(x),sm(y))

4 hor(sm(x),lg(y)) and hor(lg(x),sm(y))

5 ver(sm(x),sm(y))

6 hor(sm(x),sm(y))
5.1. Illustrative example – a similarity between geometric

figures

In Fig. 6 there are presented 48 ¼ 6� 8 geometric
patterns, which contain either in horizontal or in vertical
settings two objects, which moreover can be of two sizes,
small and big. Let us mark holographic representations of
corresponding atomic concepts as follows:
Objects:
 tr (triangle), sq (square), ci(circle), st
(star)
Unary relations:
 sm (small), lg (large)

Binary relations:
 hor (horizontal), ver (vertical)

Variables:
 ver_var1 (1st variable for binary

relation ver), ver_var2 (2nd variable for
binary relation ver), hor_var1 (1st
variable for binary relation hor),
hor_var2 (2nd variable for binary
relation hor)
Single figures from Fig. 6 are characterized by relations
given in Table 1.
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Fig. 7. Illustrative presentation of similar figures for two chosen figures 1 and 48 (see Fig. 6). Single arrows are marked by the cosine between vectors

representing the figures calculated by formula (32).
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Holographic representations of single cases from this
table have the following form (compare with Eq. (27)).

t1;x;y ¼ verþ ver_var1 � lg� xþ ver_var2 � lg� y
� �

;

t2;x;y ¼ horþ hor_var1 � lg� xþ hor_var2 � lg� y
� �

;

t3;x;y ¼
verþ ver_var1 � lg� xþ ver_var2 � sm� y

� �
;

verþ ver_var1 � sm� xþ ver_var2 � lg� y
� �

;

(

t4;x;y ¼
horþ hor_var1 � lg� xþ hor_var2 � sm� y

� �
;

horþ hor_var1 � sm� xþ hor_var2 � lg� y
� �

;

(

t5;x;y ¼ verþ ver_var1 � sm� xþ ver_var2 � sm� y
� �

;

t6;x;y ¼ horþ hor_var1 � sm� xþ hor_var2 � sm� y
� �

;

(31)

where x and y are holographic representations of single
objects (tr, sq, ci, st) and the bracket /uS indicates, that
the vector u is normalized. The similarity between single
figures is determined by the cosines of their holographic
representations

similarity X ;X 0ð Þ ¼ cos t; t0ð Þ. (32)

The obtained results are shown in Fig. 7. The dominant
feature controlling similarity value is the horizontal or
vertical arrangement of objects. The cosines between
vectors (i.e. also the similarity) between two figures, which
have different arrangement is usually smaller than 0.2.

In general, holographic reduced representation allows
fairly simple determination of similarity of objects specified
by a predicate structure (24) or by its generalization
through further nested predicates (see (30)). This possibility
opens new horizons for future developments in funda-
mental methods of finding similar objects or analogies.
Similarity search is very difficult for artificial intelligence
requiring special symbolic techniques [19].
6. Reasoning by modus ponens and modus tollens

Simulation of reasoning processes (inference) belongs to
the basic problems, which are repeatedly solved in artificial
intelligence and cognitive science [24]. Fodor’s and Pyly-
shin’s critique of connectionism [2] was based on the
conclusion, that artificial neural networks can not ade-
quately simulate the property of systematicity [5,20,28],
which is an integral part of higher cognitive activities. The
term systematicity means, that the ability to represent some
states of affairs (‘‘John loves Mary’’) is closely linked to the
ability to represent other states of affairs (e.g., ‘‘Mary loves
John’’). The critique was certainly correct at the time they
wrote it, but they also claimed, that even if a connectionist
system would simulate systematicity, then it would be a
mere implementation of a symbolic system, and hence
uninteresting.
Further development of neural network theory showed,

that connectionism is a universal computational tool,
which does not have limits of applicability. In some
domains the application of connectionism is cumbersome
and complicated and other approaches for the given
domain provide substantially simpler and more direct
solution. The discussion concerning the Fodor and Pyly-
shin critique still continues; however, new approaches
should at least demonstrate that they are able to simulate
basic processes of logical thinking.
Similarly as for neural networks, in our paper we intend

to show, that also holographic reduced representation
might be used to simulate higher cognitive processes. We
also want to demonstrate, that at least for simple cases a
special representation of implication can link together basic
logical operations of modus ponens and modus tollens.
The result of these operations can be obtained from
convolution of two vectors, the first representing an input
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(antecedent, resp. inverse of consequent) and the second
representing the implication. We believe that the effortless
use of one vector for two logical operations brings HRR
closer to the property of systematicity.

A holistic transformation of hierarchical structures
containing logical expressions with operations 4,3, and
) represented by HRR was already studied by Neumann
[14–16], who shown, that a gradient descent technique can
be used to learn such transformation. However, she did not
use modus ponens or modus tollens. A possibility to
represent rules of deductive logic was shortly discussed also
by Plate [19].

In this section we shall show a possibility of representa-
tion of two basic modes of deductive reasoning of
propositional logic,

p) q p) q

p and q̄

q p̄

(33)

which are called modus ponens resp. modus tollens. These
modes of reasoning are equivalent to the following
tautologies of the predicate logic

p) qð Þ ^ pð Þ ) q, (34a)

p) qð Þ ^ q̄ð Þ ) p̄. (34b)

Implication can be understood as a binary relation, which
can be represented in holographic distribution like this (see
formula (29)):

tp)q ¼ op� impl þ var1 � pþ var2 � q (35)

The formula contains a sum of three parts, the first part
specifies the type of relation (implication), the second and
third parts specify the first (antecedent) resp. the second
(consequent) variable of the relation of implication.

However, the ‘‘classical’’ form (35) of the distributed
representation of the implication operator is rather
cumbersome from the application point of view. To extract
the result of the implication from this representation would
not be straightforward. We need a representation, which
would give us the result of the implication after a simple
operation. It means, that we need such a representation of
implication p) q, which would produce q after convolu-
tion with p, and the same representation should produce p̄
after convolution with q̄. Therefore, we introduce a
specially transformed representation of implication ~tp)q,
which satisfies these requirements.

The next few paragraphs up to Eqs. (38a,b) describe a
way how to apply modus ponens, reps. modus tollens by
procedure Construction_of_implication ðinput : conce

output : ~tp)q

procedure Implication ðinput : conceptual vectors imp

output : x� ~tp)qÞ;
using an implication represented by ~tp)q and antecedent p,
resp. ~tp)q and consequent q̄.
The conceptual vector representing a particular implica-

tion relation can be transformed as follows:

~tp)q ¼ tp)q � T, (36a)

where

T ¼ varn1 � pn � pn � qþ varn2 � qn � q̄n � p̄. (36b)

An analogue of the mapping vector T was initially used by
Kanerva [8] in his theory of learning from examples, its
main advantage consists in its ability to incorporate several
substitutions at once. In particular, it transforms the
original implication vector tp)q onto a new implication
vector ~tp)q, which is more appropriate for simulations of
modus ponens and modus tollens rules. The vectors p̄ and q̄
are randomly generated vectors representing negations of
propositions p and q, respectively.
The construction of ~tp)q, described by Eq. (36), from the

original representation of tp)q in (35) is rather compli-
cated. However, we do not need to proceed from tp)q as in
(36) to construct a representation of a particular repre-
sentation of ~tp)q, we can directly use further described
formula (37) derived from Eqs. (36).
There are two important components in the transformed

representation of implication:

~tp)q � pn � qþ q̄n � p̄ (37)

which gives the holographic representation of the rules
modus ponens and modus tollens. This new representation is
a consequence of Eqs. (35) and (36a),(36b), it is an
approximate version of ~tp)q defined originally by
(36a),(36b). The vector ~tp)q is an encoded form of the
implication p) q that allows the logical inference modus

ponens and modus tollens to be computed via simple vector
operations,

p� ~tp)q � q, (38a)

q̄� ~tp)q � p̄. (38b)

The first formula (38a) can be understood as a holographic
representation of modus ponens (see (33) and (34a)), while
the other formula (38b) is a holographic representation of
modus tollens (see (33) and (34b)).
The pseudo-code for an algorithm implementing the

implication for distributed representation is given in
Algorithm 1, where we use the approximate version of
~tp)q defined by (37) instead of its exact, but cumbersome
definition in (36a),(36b).
ptual vectors p; q;

:¼ pn � qþ q̄n � p̄Þ;

lication ~tp)q;x;
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Algorithm 1. A simplified version of implication procedure
using implicitly vector ~tp)q for modus ponens and tollens.
Procedure convolution � is defined by Eqs. (3)–(5),
procedure inverse ð Þn is defined by Eqs. (7),(8). The vector
x in the procedure Implication can be substituted by p, with
a return value approximately equal to q, as well as by q̄,
with a return value approximately equal to p̄.

If we allow a formal modification of (38a),(38b) in such a
way that the vector ~tp)q is multiplied by p̄n or qn, then we
shall call the results p̂, resp. ^̄q, see (38c),(38d). The hats on
the symbols in (38c),(38d) are used to distinguish the results
of multiplication from the vectors p and q̄. If the values of
vectors with hats were similar to the values of vectors
without hats, then we obtained the logically incorrect
results which correspond to reasoning fallacies known as
‘‘affirming the consequent’’ and ‘‘denying the antecedent’’,
respectively,

qn � ~tp)q � p̂, (38c)

p̄n � ~tp)q � ^̄q. (38d)

In fact, the fallacies typical for human reasoning do not
appear in this model, the vector p differs much from p̂, as
well as the vector q̄ differs from ^̄q. In Fig. 8 we show that
the cosines between p� ~tp)q and q and also between q̄�
~tp)q and p̄ are much greater than fallacious cosines
between q� ~tp)q and p, and between p̄� ~tp)q and q̄,
respectively.

7. Predicate logic

We shall further deal with a simple form of predicate
logic, which is based on predicate symbols P(x), Q(x,y),
and R(x,y,z), where their distributed representations have
forms (see Section 6)

tP xð Þ ¼ pred � P þ pred_var1 � x, (39a)

tQ x;yð Þ ¼ pred �Q þ pred_var1 � xþ pred_var2 � y,

(39b)
tR x;y;zð Þ ¼ pred � Rþ pred_var1 � x

þ pred_var2 � yþ pred_var3 � z. ð39cÞ

Of course, in standard predicate logic, these predicates may
be accompanied by quantifiers. For example, a universally
quantified predicate ð8xÞPðxÞ can be represented in the
following way:

t 8xð Þ ¼ uni_quant � uni þ uni_quant_var� x, (40a)

tð8xÞPðxÞ ¼ tð8xÞ þ tð8xÞ � tPðxÞ (40b)

All conceptual vectors tPðxÞ; tQðx;yÞ; tRðx;y;zÞ, and tð8xÞPðxÞ can
be recognized and extracted by a decoding and clean up
procedure described in Section 2.
The above process is slightly complicated for further

study of reasoning processes based on predicate logic and
using distributed representation; the application of the
conceptual vector t(8x) for the representation of the symbol
(8x) basically only unnecessarily complicates the analysis
of composed conceptual vectors containing t(8x). We shall
therefore stop using the symbol (8x) explicitly, its meaning
will be substituted by usage of a ‘‘universal variable’’ x.
Predicate P(x) containing the universal variable x is then
interpreted as ð8xÞPðxÞ. We can therefore with a certain
caution use a ‘‘formula’’ ð8xÞPðxÞ � PðxÞ, and similarly
simplify binary and ternary predicates.
In predicate logic, a rule of universal instantiation

concretizes a predicate with a universal quantifier onto a
predicate with a concrete value a, ð8xÞPðxÞ ) PðaÞ, which
is a result of a simple tautology of propositional logic
p ^ q) q. Both variables and their concrete values are
represented by conceptual vectors. With the substitution
ð8xÞPðxÞ � PðxÞ we shall rewrite this concretization into a
simpler form

P xð Þ ) P að Þ, (41)

We shall construct a distributed representation of this
universal instantiation of a simple unary predicate by
a transformation vector T, in a similar manner to
Eqs. (36)–(38). When the conceptual vector x is substituted
by a conceptual vector a in tP(x) specified by (39a), we
arrive at the conceptual vector tPðaÞ. The distributed
representation (41) then looks as follows

tPðaÞ ¼ pred � P þ pred_var1 � a � tPðxÞ � T. (42)

If we put T ¼ xn � a, then the conceptual vector tPðaÞ is
approximately equal to

tP að Þ � tP xð Þ � xn � a (43)

We see that a distributed representation of the universal
instantiation can be concretized by a transformation vector
T, which substitutes a universal variable x by a particular
value a. A similar approach was initially used by Plate [13].
We shall use this simplified representation of quantified

predicates to study so called generalized modus ponens and
generalized modus tollens in a simplified form using implied
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universal quantification of x

PðxÞ ) QðxÞ PðxÞ ) QðxÞ

PðaÞ and Q̄ðaÞ

QðaÞ P̄ðaÞ

. (44)

These generalized schemes of deductive reasoning are
isomorphic to the corresponding propositional schemes
(33). The distributed representation of the main (top)
premise of these rules has a form

tPðxÞ)QðxÞ ¼ op� impl þ impl_var1 � tPðxÞ þ impl_var2 � tQðxÞ.

(45)

The concretization of implication PðxÞ ) QðxÞ onto
PðaÞ ) QðaÞ, can be formally expressed by an implication
(see (41))

P xð Þ ) Q xð Þð Þ ) P að Þ ) Q að Þð Þ, (46)

where the right hand side has the following distributed
representation:

tPðaÞ)QðaÞ ¼ op� impl þ impl_var1 � tPðaÞ þ impl_var2 � tQðaÞ

� tPðxÞ)QðxÞ � xn � a. ð47Þ

Similarly as in the previous section (see (36)–(38)), this
concretization of an implication (47) can be expressed by
using a transformation operator ~T in vector form as
follows:

~tPðxÞ)QðxÞ ¼ tPðxÞ)QðxÞ � ~T, (48)

where the new transformed distributed representation
~tPðxÞ)QðxÞ satisfies the formulas, which represent the rules
(44) modus ponens and modus tollens

tPðaÞ � ~tPðxÞ)QðxÞ � tQðaÞ, (49a)

tQ̄ðaÞ � ~tPðxÞ)QðxÞ � tP̄ðaÞ, (49b)

where tP̄ðaÞ and tQ̄ðaÞ are conceptual vectors assigned to
negated predicates :P(x) and :Q(x), respectively, con-
cretized for x ¼ a. These predicates have a conceptual
vector representation as follows:

tP̄ðxÞ ¼ pred � P̄ þ pred_var1 � x; tP̄ðaÞ

tP̄ðaÞ ¼ pred � P̄ þ pred_var1 � a, ð50aÞ

tQ̄ðxÞ ¼ pred � Q̄ þ pred_var1 � x; tQ̄ðaÞ

tQ̄ðaÞ ¼ pred � Q̄ þ pred_var1 � a, ð50bÞ

where P̄ and Q̄ are new randomly generated conceptual
vectors. The composed conceptual vector ~tPðxÞ)QðxÞ from
(49) can be simply specified by

~tPðxÞ)QðxÞ ¼ tnPðaÞ � tQðaÞ þ tn
Q̄ðaÞ
� tP̄ðaÞ. (51)

If we introduce this expression into (48) and multiply from
the left by tnPðxÞ)QðxÞ, we arrive at an explicit formula for the
transformation operator ~T.
7.1. Algorithmic description of reasoning by modus ponens

and modus tollens

In this subsection we give a precise algorithmic ana-
lysis of our approach presented in the previous sub-
section for the distributed holographic implementation
of generalized logical rules modus ponens and modus
tollens (44):

Step 1: Constant conceptual vectors pred, P, Q, P̄; Q̄,
pred_var1, pred_var2, x, a, and b are randomly generated.

Step 2: Conceptual vectors tPðxÞ and tQðxÞ are constructed,
see Eq. (39a).

Step 3: Conceptual vector tPðxÞ)QðxÞ is constructed, see
Eq. (45), we omitted the first term on the left-hand side as
irrelevant for the present purposes.

Step 4: Construction of conceptual vectors tPðaÞ; tPðbÞ;
tQðaÞ, and tQðbÞ by making use of (43) or its analogs for

tPðbÞ; tQðaÞ, and tQðbÞ, respectively. Of course, we might use
immediately the equation (42) or its analogs, which would
give us an exact construction. However, using an approx-
imate equality like (43) brings us closer to a course of
natural deductive process.

Step 5: Construction of conceptual vectors tP̄ðaÞ; tP̄ðbÞ;
tQ̄ðaÞ, and tQ̄ðbÞ by making use of (50).

Step 6: Construction of a transformation conceptual
vector ~T from (48) such that a generalized form of (36b) is
used

~T ¼ impl_varn1 � tnPðxÞ � tnPðaÞ � tQðaÞ

þ impl_varn2 � tnQðxÞ � tn
Q̄ðaÞ
� tPðaÞ,

Step 7: Construction of ~tPðxÞ)QðxÞ, see Eq. (48).
Step 8. Applying (49a),(49b) we construct from ~tPðxÞ)QðxÞ

consequences specified by modus ponens and modus
tollens. Results of this application may be diagrammati-
cally visualized as in Fig. 8, where the first two columns
correspond to correct rules mp and mt, whereas the third
and fourth results correspond to fallacies.
7.1.1. Illustrative example – modeling of reflexive reasoning

Applying the algorithm from the previous Section 7.1 we
may outline a slightly generalized case, when predicates
contain more than one argument. This illustrative example
demonstrates that the holographic reduced representation
provides formal tools, which can be used to simulate the
reasoning process based on generalized modus ponens (44).
This process was widely studied by Shastri and Ajjana-
gadde [24] by the connectionist system called SHRUTI,
which was able to simulate reflexive reasoning based on
predicate logic. The process of reflexive reasoning on a
formal level can be modeled by the well-known process of
forward chaining, which belongs to basic deductive
processes in computational logic. Similar results are
achieved also by a formalism of holographic distributed
representation.
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own(Mary,book)
can_sell(Mary,book)

own(John,something)
can_sell(John,something)

(1) give(x,z,y)⇒own(y,z) 

(2) buy(John,something)

(3) own(x,y)⇒can_sell(x,y)
(a) give(John,Mary,book)

(b) buy(x,y)⇒own(x,y) 

Fig. 9. Illustration of an application of the generalized rule modus ponens (44) for deduction or knowledge discovery (marked by gray shading and also by

incoming arrows) from implications (1-3) and from input facts (a-b), specified further in the text and marked in the figure by outgoing arrows.
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Fig. 10. Graphical representation of modus ponens for all four cases presented in Fig. 9.
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Let us have a formal system containing three general
rules (see Fig. 9):
(1)
 giveðx; y; zÞ ) ownðy; zÞ, type x : donor; type y :
acceptor; type z : object,
(2)
 buyðy; zÞ ) ownðy; zÞ, type y : buyer; type z : object,

(3)
 ownðy; zÞ ) can_sellðy; zÞ, type y : owner; type z :

object,

and two observations (facts)
(a)
 give (John, Mary, book),
(b)
 buy (John, something).
What are the deductive conclusions of this system? The
results are shown in Fig. 9, we shall now deduce them with
an application of distributed representation based on
conceptual vectors and operations over them.

Let us analyze the first generalized modus ponens from
Fig. 9

give x; y; zð Þ ) own y; zð Þ

give John;Mary; bookð Þ

own Mary; bookð Þ
:

(52)
With an application of the approach described by (45)–(51)
we can realize this scheme of reasoning by a representation
of conceptual vectors, its single items (going top down) are
represented as follows:

t1 ¼ op� impl þ var1 � tgiveðx;y;zÞ þ var2 � townðy;zÞ, (53a)

t2 ¼ tgiveðJohn;Mary;bookÞ ¼ giveþ give_var1 � John

þ give_var2 �Maryþ give_var3 � book, ð53bÞ

t3 ¼ townðMary;bookÞ ¼ ownþ own_var1 �Mary

þ own_var2 � book ð53cÞ

where conceptual vectors tgiveðx;y;zÞ and townðy;zÞ are con-
structed analogically to (39). In the first step we must carry
out a concretization of the implication giveðx; y; zÞ )
ownðy; zÞ, so that the general variables x, y, z are
substituted by concrete values John, Mary, book. This
concretization is carried out by a transformation
T ¼ xn � aþ yn � bþ � � �, where x, y, y are general
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objects and a, b, y are their concretizations (e. g. x, y, y
and John, Mary,y)

t̂1 � t1 � T (54a)

where

t̂1 ¼ tgiveðJohn;Mary;bookÞ)ownðMary;bookÞ

¼ op� impl þ var1 � tgiveðJohn;Mary;bookÞ

þ var2 � townðMary;bookÞ ð54bÞ

The concretized representation tgiveðJohn;Mary;bookÞ)ownðMary;bookÞ

is in the next step applied for modus ponens carried out by
formulas (48),(49)

~t1 ¼ tngiveðJohn;Mary;bookÞ � townðMary;bookÞ (55)

where the resulting conceptual vector ~t1 is an actual
concretization of (48) for an implication giveðJohn;Mary;
bookÞ ) ownðMary; bookÞ; it already represents modus
ponens, i.e.

tgiveðJohn;Mary;bookÞ � ~t1 � townðMary;bookÞ (56)

The other three instances of generalized modus ponens
from Fig. 9 can be realized in a similar way. Numerical
results for all four modus ponens in Fig. 9 are presented in
Fig. 10, where are displayed cosines between results
presented by (56) and expected vectors highlighted in Fig.
9. For instance, by the application of relation (56) we
arrived at a vector tgiveðJohn;Mary;bookÞ � ~t1 ¼ t0ownðMary;bookÞ,
which is similar to townðMary;bookÞ. Diagram A contains all
four cosines between this vector t0ownðMary;bookÞ and all four
expected results represented by townðMary;bookÞ,
townðJohn;somethingÞ, tcan_sellðMary;bookÞ, and tcan_sellðJohn;somethingÞ.

8. Conclusions

A suitable distributive coding of structured information
(sequence of symbols, nested relational structures, etc.) is
very important in artificial intelligence and cognitive
science. Holographic reduced representation offers new
unconventional approach to such a coding. The used
distributed representation is based on two binary opera-
tions: unary operation ‘‘involution’’ and binary operation
‘‘convolution’’ over a domain of n-dimensional randomly
generated conceptual vectors, which elements satisfy
normal distribution N(0,1/n). Application of this distrib-
uted representation allows us to model various types of
associative memory, which are represented by a conceptual
vector. It also allows us to decode a memory vector, i.e. to
determine the conceptual (atomic) vectors it is composed
of. Such an analysis of the memory vector is carried out by
a clean-up procedure that determines from the cosine of the
angle between the vectors, which of the vectors is the most
similar to the memory vector. Holographic reduced
representation allows measuring a similarity between two
structured concepts by a simple algebraic operation —
scalar product of their distributed representations. This
product can be very useful for modeling of processes,
which search through memory to find its similar (analogi-
cal) single components. Of course, the procedure, as well as
any procedure based on randomly generated vectors, may
occasionally fail to provide the correct answer, but this
possibility decreases with the size of the used vectors.
The main contribution of this paper is to outline a

possibility, how to use the holographic reduced representa-
tion to model an inference process based on the rules modus

ponens and modus tollens in propositional calculus as well
as in predicate logic. This possibility is very important for a
proper assessment of distributed representation (including
neural networks) in artificial intelligence and cognitive
science. It enables to implement higher cognitive activities,
which was retained in literature mainly by symbolic localist
representations.
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